文章编号: 1005-0906(2020)02-0061-08

DOI: 10.13597/j.cnki.maize.science.20200209

玉米株高主效QTL qPH2.4的定位分析

张梦迪¹,张晓聪²,李新海²,翁建峰²,席章营¹ (1.河南农业大学农学院,郑州 450046; 2.中国农业科学院作物科学研究所,北京 100081)

摘 要:课题组前期以玉米自交系郑58为轮回亲本,以昌7-2为供体亲本,通过分子标记辅助选择获得染色体单片段代换系Z12和W16。Z12和W16在bin2.07区域均含有1个来源于昌7-2的染色体片段,株高均显著高于轮回亲本郑58。利用郑58和Z12为材料构建F₂分离群体,基于重测序和混合分离分析(BSA)策略,将株高主效QTL qPH2.4定位于第2染色体13.95 Mb(201 457 953~215 022 157 bp)的区域内。利用在目标区间内筛选出的20对多态性分子标记对包含743个单株的郑58×Z12 F₂分离群体和包含1720个单株的郑58×W16 F₂分离群体进行基因型分析,结合田间株高数据进行QTL定位,将株高主效QTL qPH2.4定位在InDel分子标记ph-18和ph-19之间,区间的遗传距离为0.57 cM,物理距离为626 kb。参考B73基因组(RefGen_v4)注释信息,该区间内存在17个注释基因,其中,包含可以调控油菜素内酯信号的基因Zm00001d006677。

关键词: 玉米;株高;染色体单片段代换系;混合分离分析;QTL定位 **中图分类号:** S513.035.3 **文献标识码:** A

Positioning Analysis of a Major QTL qPH2.4 for Maize Plant Height

ZHANG Meng-di¹, ZHANG Xiao-cong², LI Xin-hai², WENG Jian-feng², XI Zhang-ying¹

(1. College of Agriculture, Henan Agricultural University, Zhengzhou 450046;

2. Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China)

Abstract: Maize inbred line Zheng58 was used as the recurrent parent, the chromosome single segment substitution line Z12 and W16 were constructed with Chang7-2 as the donor parent through genome-wide molecular marker-assisted selection. Z12 and W16 contain a chromosome segment from Chang7-2 in the bin2.07 region, and their plant height was significantly higher than that of Zheng58. In this study, an F_2 population was constructed with Zheng58 and Z12 as materials. Based on the resequencing and bulked segregant analysis strategy, the plant height QTL *qPH2.4* was located in the interval 13.95 Mb(201 457 953-215 022 157 bp) of chromosome 2. Genotype analysis was performed on the Zheng58×Z12 F_2 segregation population containing 743 individuals and the Zheng 58×W16 F_2 segregation population containing 1 720 individual plants using 20 polymorphic molecular markers screened in the target interval, and the plant height QTL *qPH2.4* was located between the InDel molecular markers ph-18 and ph-19. The genetic distance was 0.57 cM, and the physical distance was 626 kb. Reference B73 refgen_v4, there were 17 candidate genes in this interval, including the gene *Zm00001d006677* which can regulate the brassinosteroid signal.

Key words: Maize; Plant height; Chromosome single segment substitution line; Bulked segregant analysis; QTL mapping

玉米株高是构成玉米株型的重要性状并且与产 量密切相关。目前,已有300多个株高QTL得到了 初步定位(http://www.maizegdb.org),这些QTL座位分 布在玉米的10条染色体上。Beavis¹¹¹等利用4个群 体鉴定出16个玉米株高QTL。Bai¹²¹等利用综3和衡 白522构建的CSSL群体,在第1、2、3、5、6染色体上 检测到9个株高QTL,表型变异的贡献程度范围为 3.1%~22.6%。陆明洋等¹³¹利用自交系87-1和综3 构建的染色体片段代换系SSSL-Y7,在第1染色体 bin1.07 区域精细定位了1个玉米株高主效 QTLqph1-4。刘忠祥等¹⁴¹在2年3个环境中利用两个

录用日期: 2019-03-19

基金项目:国家自然科学基金项目(31371629)

作者简介:张梦迪(1995-),女,硕士,从事玉米遗传育种研究。 Tel:15600160879 E-mail:15600160879@163.com 席章营为本文通讯作者。E-mail:xizhangying@163.com

高代回交的重组自交系,将株高主效QTLqPH3.2定 位于第3染色体的20 cM区间内,并利用在目标区间 内筛选出的重组交换和目标区段跨叠系对qPH3.2 进行了精细定位。Teng¹⁵¹等利用以综3为遗传背景, 导入衡白522第3染色体片段的导入系SL15,精细 定位了1个株高主效QTL qPH3.1。通过对qPH3.1 的进一步分析,发现1个与赤霉素合成途径相关的 基因ZmGA3ox1,该基因与株高密切相关。采用遗 传分析的方法,利用矮秆突变体dwarf-1证实Zm-GA3ox1基因变异可以影响玉米株高。Xing¹⁶¹等利用 回交群体对玉米株高主效QTL qph1进行了精细定 位和克隆,发现了1个控制生长素极性运输并且发 生稀有等位变异的br2基因,可以解释玉米株高20% 的表型变异。

本研究以玉米自交系郑58遗传背景上昌7-2的 染色体单片段代换系Z12和W16为试验材料,基于 重测序和混合分离分析,对Z12中的株高主效 QTLqPH2.4进行初步定位;基于F₂分离群体和在目 标区域内新开发的分子标记对株高主效QTL qPH2.4进行定位分析,为该基因的精细定位、基因 克隆及基因作用机制解析提供参考。

1 材料与方法

1.1 试验材料

Z12和W16均为玉米自交系郑58遗传背景、仅带有1个来源于昌7-2染色体片段的染色体单片段代换系,该片段位于bin2.07区域。Z12内的代换片段位于SSR标记nc003与phi090之间^[7];W16内的代换片段位于InDel标记ph-4与ph-30之间。Z12和W16的株高均显著高于轮回亲本郑58。BSA所用群体是Z12与郑58构建的F₂分离群体。QTL定位所用群体是郑58×Z12和郑58×W16的F₂分离群体。

1.2 试验方法

1.2.1 田间试验设计与次级分离群体的构建

2017年春于北京昌平种植郑58、Z12、W16、包含743个单株的郑58×Z12的F2分离群体和包含1720个单株的郑58×W16的F2分离群体。行长4m,每行17株。灌溉、施肥、防虫、除草等田间管理与当地田间管理方式相同。在成熟期后测量每个植株从地面到雄穗顶端的高度,即株高。

1.2.2 DNA的提取和BSA样品制备

每株叶片取两份分别置于2.0 mL的离心管中, 将取下的叶片立即放入液氮中,并在-80℃冰箱中保 存。使用 CTAB 法提取 160 份材料的 DNA,在提取 DNA 的过程中使用 24:1(氯仿与异戊醇的混合液, 体积比为24:1) 抽提两次。提取完成的DNA加 20 μL水溶解,并加RNA酶37℃孕育4h。最后使用 DNA提取试剂盒中的蛋白柱去除蛋白杂质。从 郑58×Z12的F₂分离群体中挑选极端表型H(高株)和 L(矮株)各80株。H群体株高均高于175 cm,L群体 株高均低于150 cm。将H群体的80份DNA和L群 体的80份DNA分别等质量混合为H混合池和L混 合池。将H混合池、L混合池、郑58的DNA测序。 1.2.3 测序数据过滤和质控

为保证数据的质量,测序的Raw Data 要经过过 滤和质控。首先使用Trimmomatic 软件对序列进行 过滤,去掉reads 中带有的测序接头,去掉reads 中N 含量比较高(N的含量大于5%,N表示测序过程中无 法确定碱基信息)的序列,丢掉质量比较低(质量值 低于8的碱基占了50%以上)的reads,过滤后得到 Clean Data,然后使用FastQC(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/)软件进行质控。 为了确保分析质量,采取去掉接头读长150 bp的作 后续的数据分析。以B73基因组作为对照使用bowtie2进行比对,使用GATK软件检测变异信息。 1.2.4 关联分析

BSA 测序结果经过计算和拟合分析,筛选出高 质量的 SNP 位点。依据检测出的 SNP 位点,计算混 池 样本的 SNP-index[SNP-index(L)= ρ L/(ρ L + ρ H); SNP-index(H)= ρ H/(ρ L+ ρ H)],然后计算L池和H池之 间 Δ SNP-index[Δ SNP-index=SNP-index(H)-SNP-index(L)]⁸¹。置信区间的候选区域。

1.2.5 标记开发

根据郑 58、昌 7-2、B73 重测序的插入缺失 (InDel)片段侧翼序列,采用 Premier 5.0软件进行引物设计,扩增产物长度在 80~150 bp之间。设计出的引物以郑 58、昌 7-2 和郑 58×Z12 的 F₁ DNA 为模板,筛选出具有多态性的标记。

1.2.6 QTL定位分析

基于F₂代分离群体的分子标记基因型,构建遗 传连锁图谱,利用QTL IciMaping V3.1软件的完备区 间作图法对玉米株高性状进行QTL定位。首先整 理分子标记基因型数据以及表型数据,输入QTL IciMaping软件中,在LOD大于3.00条件下分组,并进 行nnTwoOpt方法的排列,以SARF方法进行标记顺 序检测,构建遗传连锁图谱。之后,采用完备区间作 图方法,结合表型数据定位株高QTL。

1.2.7 候选基因分析

参考 B73 基因组(RefGen_v4)注释信息筛选定位 区间内的候选基因。根据基因 Zm00001d006677 的 序列信息,设计引物PH-BZRDNA-F1:5′-GTCA-ATACTGAGCACAATACGC-3、PH-BZRDNA-R1: 5′-GCTCACACTCCCAGAGAAGATA-3′,PH-BZRD-NA-F2:5′-ACCCCTCCATCAAAGAAAAG-3、PH-BZRDNA-R2:5′-CGGCCTAGAGTAGCTCACAC-3′, PH-BZRCDS-F:5′-AGGGGCTGAGCATCAGAG-3′、 PH-BZRCDS-R:5′-ACCACGAAGGCACGAACTAC-3′。以郑58和W16的基因组DNA和CDS为模板进 行PCR扩增,扩增程序为,98℃预变性3min;98℃变 性30s,60℃退火30s,68℃延伸1min30s,共进行 35个循环;68℃在延伸10min。总反应体系为50µL, PCR产物经电泳检测后进行测序。

2 结果与分析

2.1 混合分离分析

2.1.1 郑58、Z12的表型性状

2017年,在北京昌平郑58和Z12的株高表型数据显示,郑58的株高为149.5±5.8 cm,Z12为

168.5±8.6 cm,两者之间存在极显著的差异(P<0.01)。 2.1.2 测序数据分析

BSA 全基因组重测序结果分析表明,来自亲本 郑 58 的 reads 有 207.96 M 个片段,来自 L 基因池的 reads 有 344.11 M 个片段,来自 H 基因池的 reads 有 258.46 M 个片段。郑 58、L 池和 H 池的平均测序深 度分别为 21.19、23.50 和 22.04,和 B73 基因组相比分 别检测到 4 410 907、4 822 008、4 818 351 个变异位 点。L 池和 H 池之间存在的变异位点为 1 129 628 个,这些差异位点在第 2 染色体上分布的最多,为 176 042 个变异位点;在第 10 染色体上分布的最少, 为 59 849 个变异位点。

2.1.3 关联分析

将 BSA 测序结果经过计算和分析,得到可能与 性状相关的候选区域(图 1),该区域在2号染色体上 跨越 13.95 Mb(201 457 953 - 215 022 157)。该区域 存在6个差异显著位点(表 1)。

图1 你间口你怕人匹威的金足

Fig.1 Identification of relevant areas of plant height

	表1	差异显著位点信息
--	----	----------

Table 1 Information of significant difference loci

染色体 Chromosome	位 点 Site	起始位置 Starting position	结束位置 End position	avg∆SNP	95%置信区间 CI-95
Chr2		201 257 037	201 274 675	0.124	0.300
Chr2	Ph2.4-1	201 457 953	201 493 362	0.300	0.298
Chr2	Ph2.4-2	202 896 365	203 285 630	0.327	0.287
Chr2	Ph2.4-3	204 225 539	204 638 734	0.412	0.302
Chr2	Ph2.4-4	207 714 184	208 361 383	0.335	0.292
Chr2	Ph2.4-5	208 880 691	209 135 294	0.403	0.295
Chr2	Ph2.4-6	213 756 997	215 022 157	0.375	0.298
Chr2		215 327 421	215 447 005	0.054	0.310

表2 开发的InDel标记信息

2.2 株高QTL定位分析

2.2.1 分子标记开发

nc003与phi090之间,筛选出20对亲本间有多态的插入缺失(InDel)标记,引物序列及物理位置见表2。

以郑58和Z12基因组DNA为模板,在SSR标记

引物名称	F链序列	R链序列	物理位置(bp)	
Primer name Forward sequence		Reverse sequence	Physical location	
ph-4	TCTGCTGCGTGAGAGTGAG	GGCAGTCCCACTTCATCAG	200 408 355	
ph-5	ACACGCTACACGATATGAGGGAG	TGAGTGCCTTCTATTCTGAGTCG	202 651 049	
ph-6	CATTCAGCCCCACCCTACGC	AACACGAACCAGCAGCAGCG	203 790 379	
ph-7	ACCCGTGTAGACAGAAGCCT	AGTCGTATGCCACCTGTTCG	204 890 461	
ph-11	CTGTGTGTTTTGGTCGTAGC	CCCGTGAGAAGCAGATAAC	208 239 050	
ph-12	GCCCTACTGATGACGCCTT	CAGCAACAGCCAAGAACCA	209 834 304	
ph-13	TTGGGACATCAACACGACAC	CGGCAACGATAAGTCAAGTC	210 288 598	
ph-14	TCACTGCCACGGAAAACA	TTCTGAAATGTGGCGGCA	211 025 757	
ph-15	CCCTGATTTTCTTCGCTGG	GTGTGGGGGAATGGTGTCGT	211 618 757	
ph-16	CTGGACAAGGAGACGCTGGA	ACACTTTTTCCTGCCCCCTC	212 884 277	
ph-18	GTCTTGGTAGCGAGAGAGGAG	ATTCGCTTCTTGTATTGCTCG	213 468 374	
ph-19	GTCATCGCCGGCATTGAT	TAGTCTCTACCGCCTCTCTGG	214 094 078	
ph-20	GCGATTCCGTCGTCCTGTA	GGATGAAGAGCGTCTTGGC	214 473 528	
ph-21	TGGTTTCGGTTGAGGGAG	ACGAGCGGCAGGATGATAT	215 377 969	
ph-23	AGGAGGCGTCATCGTCAAT	AACTGAACCCTGCCTTGCC	216 892 334	
ph-24	GAGAAAGGTTAGGTGATGGCG	GAGCCACTGGAAGCAATGAA	217 448 794	
ph-25	ACCACTACCACCACAACGCA	CCATCTCGTCTCGGAAGGAA	219 062 128	
ph-26	AATCCTCTCGTCCCTCTCCTA	TGTTCGCTTTTCTAGGTGTGC	219 987 164	
ph-27	TTCATTCACGAAGCAAGCA	AGTCAAATCCGGACCACCA	221 853 827	
ph-30	GTCAAACGAGGTGAGGGAGTA	CAGCAGCCAGAGAAGGTTG	224 446 917	

2.2.2 郑58×Z12的F2分离群体表型分析

2017年于北京昌平调查表型数据,在包含743 个单株的F₂分离群体中,株高变异范围在120~ 202 cm,平均为160.5 cm,双向均存在具有超亲现象 的个体。由图2所示,依据分子标记ph-16的3种带 型(郑58带型、Z12带型、杂合带型),将743个单株分为3组,分别统计每组内的株高的次数分布。Z12带型的单株偏态分布于右侧,郑58带型的单株偏态分布于左侧。

Fig.2 Frequency distribution of plant height in F_2 derived from Zheng58×Z12

2.2.3 郑58 × Z12的F2分离群体 QTL 定位

根据QTL lciMapping软件格式要求整理表型数据,然后导入该软件中进行遗传连锁图谱构建。13 个标记在遗传图谱中的相对位置与B73参考基因组 的物理位置基本一致。该图谱全长16.963 cM,平均 遗传距离为1.41 cM。利用软件中的ICIM-ADD方 法进行QTL作图分析,LOD临界值为3.0时,将株高 QTL定位于InDel分子标记ph-15和ph-19之间,期间的遗传距离为2.67 cM,物理距离为2475.321 kbp (211 618 757~214 094 078),最大LOD值为35.13,可解释株高20.37%的表型变异。该QTL加性效应为8.38,显性效应为0.93,其遗传效应表现为加性效应,命名为*qPH2.4*(图3)。

Fig.3 Mapping of F2 derived from Zheng58×Z12

2.2.4 郑58、W16及其F2分离群体的表型分析

2017年夏在北京昌平对郑58、W16及其W16× 郑58的F₂分离群体的株高表型数据进行调查分 析。郑58的株高平均值为149.50±5.80 cm,W16的 株高平均值为183.71±5.31 cm。在包含1720个单株 的F₂分离群体中,株高变异范围在121~204 cm,平 均为161.9 cm。依据InDel分子标记ph-18的3种带型(郑58带型、W16带型、杂合带型),将1720个单株分为3组,分别统计每组内的株高的次数分布。W16带型的单株偏态分布于右侧,郑58带型的单株偏态分布于左侧(图4)。

Fig.4 Frequency distribution of plant height in F2 derived from Zheng58×W16

2.2.5 郑58×W16的F2分离群体QTL定位

根据QTL IciMapping软件格式要求整理表型数据,然后导入该软件中进行遗传连锁图谱构建。17

个标记在遗传图谱中的相对位置与B73参考基因组的物理位置基本一致。图5所示,该图谱全长19.203 cM,平均遗传距离为1.2 cM。利用软件中的

ICIM-ADD方法进行 QTL 作图分析, LOD 临界值为 3.0时,将株高主效 QTL *qPH2.4* 定位于 InDel 分子标 记 ph-18 和 ph-19之间,期间的遗传距离为 0.57 cM, 物理距离为 626.604 kbp(213 468 374~214 094 078)

区间内,最大LOD值为43.57,可解释株高11.40%的 表型变异。该QTL加性效应为6.09,显性效应为 0.031,其遗传效应表现为加性效应。

Fig.5 Mapping of F2 derived from Zheng58×W16

2.3 候选基因分析

利用 MaizeGDB 数据库对玉米第2号染色体 213.468~214.094 Mb该区间进行检索,发现该区间 存在17个编码蛋白的基因(表3)。其中, *Zm00001d006677*是可以调控油菜素内酯信号 (BES1/BZR1)表达的基因,该基因所在的位置与BSA 测序结果Ph2.4-6效应位点所在区域一致。经DNA 测序分析发现,该基因的CDS序列在郑58和W16间 有9个碱基的插入和5处单核苷酸变异。两个亲本 的氨基酸序列也存在3处差异和1处缺失,分别是 197(S-A)、241(A-V)、283(G-D)和276-278(缺失)位氨 基酸(图6)。

表3 qPH2.4区间内17个候选基因注释信息

Table 3 Annotation information of the 17 candidate genes in *qPH2.4* interval

基因名称	起始位置(bp)	终止位置(bp)	注 释
Gene model	Gene start	Gene end	Annotation
Zm00001d006651	213 473 849	213 477 743	tua5 – alpha tubulin5
Zm00001d006653	213 547 650	213 548 585	(RAP2.11) related to AP2 11(Arabidopsis)
Zm00001d006654	213 551 909	213 560 477	(emb2734) ARM repeat superfamily protein(Arabidopsis)
Zm00001d006656	213 605 594	213 606 086	(ATRAD51, RAD51) RAS associated with diabetes protein 51(Arabidopsis)
Zm00001d006657	213 698 948	213 714 990	(ATHST, HST, PDS2) homogentisate prenyltransferase(Arabidopsis)
Zm00001d006658	213 741 901	213 749 883	O-Glycosyl hydrolases family 17 protein(Arabidopsis)
Zm00001d006659	213 754 814	213 755 869	Unknown
Zm00001d006663	213 805 344	213 811 979	(LHCA2) photosystem I light harvesting complex gene 2(Arabidopsis)
Zm00001d006665	213 884 456	213 884 833	(ATJ2, J2) DNAJ homologue 2(Arabidopsis)
Zm00001d006667	213 889 759	213 895 829	Succinyl–CoA ligase alpha subunit(Arabidopsis)
Zm00001d006668	213 897 891	213 899 273	(AGL86) AGAMOUS-like 86(Arabidopsis)
Zm00001d006669	213 900 069	213 902 405	sbt2 – subtilisin2
Zm00001d006670	213 904 733	213 908 168	Target SNARE coiled-coil domain protein(Arabidopsis)
Zm00001d006671	213 938 824	213 947 817	Unknown
Zm00001d006673	214 011 828	214 022 318	AARP2CN domain containing(Rice)
Zm00001d006676	214 081 018	214 084 611	(5-FCL) 5-formyltetrahydrofolate cycloligase(Arabidopsis)
Zm00001d006677	214 086 849	214 088 343	(BZR1) Brassinosteroid signalling positive regulator (BZR1) family protein(Arabidopsis)

3 结论与讨论

BSA 是构建两个具有极端表型群体的混池,然 后将两个混池多态性位点的等位基因频率进行比 较,得到具有显著性差异的位点的实验方法⁹⁹。新 一代测序技术与BSA结合通过克服可用的DNA标 记限制性和避免完全的基因分型以加速精细定位与 基因分离^[10]。Takagi^[11]等将全基因组重测序与BSA 相结合快速鉴定植物 OTL 的方法命名为 OTL-seq, 并将该方法应用于水稻重组自交系与F2群体中,鉴 定出与水稻重要农艺性状相关的QTL。BSA由于在 建基因池时选用了特定的分离群体(如F2群体),并 在分组的时候选择了具有目标性状的植株,因此保 证了遗传背景不被其他性状干扰。两个基因池之间 应该只在目标区段存有差异,排除了环境以及人为 因素的影响,使结果更加准确可靠[12]。本研究中,利 用BSA 与新一代测序技术相结合的方法,将目标区 域迅速缩小至一定区间内。该方法经济并且有效, 可以加速玉米育种的改良。

本研究用的材料Z12和W16均为染色体单片段 代换系,其特点是除目标染色体片段来自供体亲本 外,基因组的其余部分均来源于受体亲本,遗传背景 较为一致,适宜用于QTL定位分析^[13,14]。本研究基 于染色体片段代换系Z12和W16与郑58构建F2分 离群体,由于只在目标区间内发生分离,该群体可以 最大限度地降低遗传背景造成的干扰,增加定位结 果的可靠性。在前人进行的玉米株高QTL的定位 工作中,有一些QTL定位于在bin2.07区域^[15]。Beavis 等通过B73×Mo17的F2:4后代鉴定了24个农艺性状 的基因组区域,平均每个性状鉴定出的QTL约为3 个,其中,有1个第2染色体的株高QTL位于bin2.07 区域,该QTL位于标记umc131,LOD值为3.6,可以 解释8%的表型变异,加性效应和显性效应分别为

-7.1 和-4.1。Lübberstedt 等¹¹⁶使用F₃家系的两个测 交群体鉴定了20个株高QTL,其中,在2号染色体上 鉴定的OTL位于bin2.07区域,该OTL在两个群体中 分别位于120~146 cM和124~150 cM区间内,LOD 值分别为3.1和3.4,表型贡献率为4.4%和4.7%。 Tang^{117]}等利用RIL群体在bin2.07区域定位了1个株 高主效 OTL gPH2(umc2372~umc1497, 181.459~ 194.069)。Zhou^[18]等利用 RIL 群体(掖 478/齐 319)构 建的高密度 bin-map 图谱对玉米株高进行 QTL 定 位,在3个环境下稳定检测到位于第二染色体的1个 与株高显著相关的QTL qPH2(mk926~mk950,193.1~ 201.4 Mb)。本实验以郑58遗传背景、昌7-2为供体 的染色体片段代换系Z12和W16为材料,对株高主 效OTL进行定位分析,两个材料均在bin2.07区域存 在单一的代换片段,Z12株高平均值比W16株高平 均值低,但均与郑58的株高存在显著差异,并且均 能检测到株高主效QTL qPH2.04。因Z12与W16代 换片段长度的差异,Z12与郑58构建的F2分离群体 数量小于W16与郑58构建的F2分离群体数量,所以 利用Z12为试验材料定位的LOD值较低且定位区间 较大。

油菜素内酯(BRs),是一类植物类固醇激素,可 以介导细胞伸长、细胞分裂、病原体抗性、种子萌发、 气孔形成、开花和光形态发生^[19,20]。BZR1是一种转 录抑制因子,具有未知的DNA结合域,并且直接与 反馈调节的BR生物合成基因的启动子结合。He^[21] 等利用微阵列分析和生物学研究的方法,说明BZR1 通过在调节BR生物合成和下游生长反应中发挥双 重作用来协调BR的稳态和信号传导,使得BZR1成 为BR途径的中心调节剂。Wang^[22]等发现显性突变 *bzr1-1D*可以抑制BR缺陷和BR不敏感(*bri1*)表型并 增强BR生物合成的反馈抑制。BZR1蛋白在黑暗生 长的下胚轴细胞核中积累,并通过BR信号传导和 bzr1-1D 突变来维持稳定。这些现象表明, BZR1 是 BR 信号通路的正调节因子, 并且介导 BR 下游反应 和 BR 生物合成的反馈调节。油菜素内酯对株高具 有最直接的影响, 并且负效应很小, 因此, 在农业上 具有很大的应用价值, 而 BZR1 反馈回路是维持 BR 平衡的关键机制。Zm00001d006677 是编码油菜素 内酯信号转导正调节因子(BZR1)家族蛋白的基因, 该基因可能通过介导 BR 的反馈调节对玉米植株高 度产生影响。在后期工作中, 可以针对该基因进行 候选基因的关联分析以及功能方面的研究。

利用BSA和QTL定位分析定位了1个控制玉米 株高的主效QTL qPH2.4,该QTL在两个定位群体中 表型贡献率均在10%以上且效应明显(LOD 值>35), 有利于进行精细定位和候选基因的挖掘;在定位区 间的17个基因中,初步分析基因Zm00001d006677的 CDS序列在亲本郑58和W16上的差异,推测该基因 可能通过介导BR的反馈调节从而影响植物的细胞 伸长。

参考文献:

- Beavis W D, Grant D, Albertsen M, et al. Quantitative trait loci for plant height in four maize populations and their associations with qualitative genetic loci[J]. Theor Appl Genet, 1991, 83(2): 141–145.
- [2] Bai W, Zhang H, Zhang Z, et al. The evidence for non-additive effect as the main genetic component of plant height and ear height in maize using introgression line populations[J]. Plant Breed, 2010, 129 (4): 376-384.
- [3] 陆明洋,陈春侠,高岭巍,等.玉米矮秆主效QTL *qph1-4*的精细定位[J].河南农业大学学报,2012,46(3):242-246.
 Lu M Y, Chen C X, Gao L W, et al. Fine mapping of the major QTL *qph1-4* for dwarf in maize(*Zea mays* L.)[J]. J. Henan Agric. Univ., 2012, 46(3): 242-246. (in Chinese)
- [4] 刘忠祥,杨 梅,殷鹏程,等.玉米株高主效QTL qPH3.2 精细定位及遗传效应分析[J].作物学报,2018,44(9):1357-1366.
 Liu Z X, Yang M, Duan P C, et al. Fine mapping and genetic effect analysis of a major QTL qph3.2 associated with plant height in Maize (Zea mays L.)[J]. Acta Agron Sin, 2018, 44(9): 1357-1366. (in Chinese)
- [5] Teng F, Zhai L H, Liu R X, et al. ZmGA3ox2, a candidate gene for a major QTL,qPH3.1, for plant height in maize[J]. Plant J., 2013, 73: 405-416.
- [6] Xing A Q, Gao Y F, Ye L F. A rare SNP mutation in *Brachytic2* moderately reduces plant height and increases yield potential in maize [J]. J. Exp Bot, 2015, 66(13): 3791–3802.
- [7] Lu M Y, Li X H, Shang A L, et al. Characterization of a set of chromosome single- segment substitution lines derived from two sequenced elite maize inbred lines[J]. Maydica, 2011, 56(4): 399-408.
- [8] Li R, Song W, Wang B, et al. Identification of a locus conferring dominant resistance to maize rough dwarf disease in maize[J]. Scien-

tific Reports, 2018, 8(1): 3248.

- [9] Schlötterer C, Tobler R, Kofler R. Sequencing pools of individualsmining genome-wide polymorphism data without big funding[J]. Nat. Rev. Genet, 2014(15): 749–763.
- [10] Han Y, Lv P, Hou S, et al. Combining next generation sequencing with bulked segregant analysis to fine map a stem moisture locus in sorghum(*Sorghum bicolor* L. Moench) [J]. PLoS One, 2015, 10(5): e0127065.
- [11] Takagi H, Abe A, Yoshida K, et al. QTL-seq:rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations[J]. Plant J., 2013, 74: 174-183.
- [12] 白凤虎,李德芳,陈安国,等.基于BSA分析法的分子标记基因 定位技术在农作物中的应用[J].中国麻业科学,2006,28(6): 282-288.

Bai F H, Li D F, Chen A G, et al. The application of the molecular gene localization technique based on BSA in crop[J]. Plant Fiber Sci. Chn, 2006, 28(6): 282–288. (in Chinese)

- [13] Wang S Y, Chen C X, Feng Y Y, et al. Characterization of a major quantitative trait locus on chromosome five for hundred- kernel weight of maize(*Zea mays* L)[J]. Maydica, 2016, 89(1): 383–395.
- [14] 陈春侠,陆明洋,尚爱兰,等.基于单片段代换系的玉米百粒重 QTL分析[J].作物学报,2013,39(9):1562-1568.
 Chen C X, Lu M Y, Shang A L, et al. Analysis of QTL for 100-kernel weight using chromosome single segment substitution lines in maize[J]. Acta Agron Sin, 2013, 39(9): 1562-1568. (in Chinese)
- [15] Beavis W D, Smith O S, Grant D, et al. Identification of quantitative trait loci using asmall sample of topcrossed and F₄ progeny from maize [J]. Crop Sci., 1994, 34: 882–896.
- [16] Lübberstedt T, Melchinger A E, Schön C C, et al. QTL mapping in testcrosses of European flint lines of maize I. Comparison of different testers for forage yield traits[J]. Crop Sci., 1997, 37(3): 921– 931.
- [17] Tang J H, Teng W T, Yan J B, et al. Genetic dissection of plant height by molecular markers using a population of recombinant inbred lines in maize[J]. Euphytica, 2007, 155(1–2): 117–124.
- [18] Zhou Z Q, Zhang C S, Yu Z, et al. Genetic dissection of maize plant architecture with an ultra-high density bin map based on recombinant inbred lines[J]. BMC Genomics, 2016, 17(1): 178.
- [19] Azpiroz R, Wu Y, Locascio J C, et al. An Arabidopsis brassinosteroid- dependent mutant is blocked in cell elongation[J]. Plant Cell, 1998, 10(2): 219–230.
- [20] Yamamoto R, Fujioka S, Iwamoto K, et al. Co-Regulation of brassinosteroid biosynthesis-related genes during xylem cell differentiation [J]. Plant Cell Physiology, 2007, 48(1): 74–83.
- [21] He J, Gendron J, Sun Y, et al. BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses [J]. Science, 2005, 307(5715):1634–1638.
- [22] Wang Z Y, Nakano T, Gendron J, et al. Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis[J]. Dev. Cell, 2002, 2(4): 505-513. (责任编辑:朴红梅)